US009327194B2

a2 United States Patent

Douceur et al.

US 9,327,194 B2
*May 3, 2016

(10) Patent No.:
(45) Date of Patent:

(54) PARTITIONED ARTIFICIAL INTELLIGENCE (56) References Cited
FOR NETWORKED GAMES
U.S. PATENT DOCUMENTS
(75) Inventors: John R. Douceur, Bellevue, WA (US);
Michael P. Calligaro, Redmond, WA 5,890,963 A 41999 Yen
> i 6,473,084 B1* 10/2002 Phillipsetal. 345/440
(US); Randall C Wood, Snohomish, WA .
(US); Jacob R. Lorch, Bellevue, WA (Continued)
(Us) FOREIGN PATENT DOCUMENTS
(73) Assignee: Microsoft Technology Licensing, LL.C,
Redmond, WA (US) WO WO003053531 Al 7/2003
OTHER PUBLICATIONS
(*) Notice: Subject to any disclaimer, the term of this .))) o
patent is extended or adjusted under 35 Balar.l et al., Mitrlxz. Adaptive Middleware for Dlstrlb.uted
U.S.C. 154(b) by 987 days. Multlpla}./er Games,” retrieved at <<http://www.cs.cmu.edu/~rajesh/
papers/middleware05.pdf>>, IFIP, 2005, pp. 392-402.
This patent is subject to a terminal dis- (Continued)
claimer.
(21) Appl No.: 13/372’305 Primary Examiner — Paul A D’Agostino
(74) Attorney, Agent, or Firm — Alin Corie; Sandy Swain;
(22) Filed: Feb. 13, 2012 Micky Minhas
(65) Prior Publication Data (57) ABSTRACT
US 2012/0142430 A1l Jun. 7. 2012 Partitioned artificial intelligence (AI) for networked gaming.
’ An exemplary system splits the Al into a computationally
Related U.S. Application Data lightweight server-side component and a computationally
intensive client-side component to harness the aggregate
(63) Continuation of application No. 12/029,286, filed on computational power of numerous gaming clients. Aggregat-
Feb. 11, 2008, now Pat. No. 8,137,199. ing resources of many, even thousands of client machines
enhances game realism in a manner that would be prohibi-
(51) Int. Cl. tively expensive on the central server. The system is tolerant
AG63F 9/24 (2006.01) of latency between server and clients. Deterministic and
AG63F 13/40 (2014.01) stateless client-side components enable rapid handoff, pre-
AG63F 13/30 (2014.01) emptive migration, and replication of the client-side Al to
(52) US.CL address problems of client failure and game exploitation. The
CPC ..o AG63F 13/10(2013.01); A63F 13/12 partitioned Al can support tactical gaming navigation, a chal-
(2013.01); A63F 2300/534 (2013.01); A63F lenging task to offload because of sensitivity to latency. The
2300/538 (2013.01); A63F 2300/6009 tactical navigation Al calculates influence fields partitioned
(2013.01); 463F 2300/63 (2013.01) into server-side and client-side components by means of a
(58) Field of Classification Search Tay]or-series approximation,

None
See application file for complete search history.

20 Claims, 10 Drawing Sheets

US 9,327,194 B2
Page 2

(56)

7,287,052
7,372,463
7,428,588
7,774,335
7,797,421
7,828,657
7,937,270
8,137,199

8,561,178
2001/0055025
2002/0015041
2003/0008712
2004/0030556
2004/0116186
2004/0133355
2004/0143852
2005/0026692
2005/0026697
2005/0067493
2005/0071306
2005/0225552
2005/0288103
2006/0026123
2006/0046854
2006/0053008
2006/0120619
2006/0179022
2006/0203739
2006/0258462
2007/0054717

B2
B2
B2
BL*
BL*
B2
B2 *
B2 *

B2 *
Al*
Al*
Al*
Al*
Al
Al*
Al
Al*
Al
Al*
Al
Al
Al*
Al*
Al*
Al*
Al*
Al
Al*
Al*
Al

References Cited

10/2007
5/2008
9/2008
8/2010
9/2010

11/2010
5/2011
3/2012

10/2013
12/2001
2/2002
1/2003
2/2004
6/2004
7/2004
7/2004
2/2005
2/2005
3/2005
3/2005
10/2005
12/2005
2/2006
3/2006
3/2006
6/2006
8/2006
9/2006
11/2006
3/2007

U.S. PATENT DOCUMENTS

Chen et al.

Anand

Berstis et al.

Scofield et al. 707/709

Scofield et al. 709/224

Booth

Smaragdis et al. 704/256

Douceurcc...... AG63F 13/10
345/473

Schluessler et al. 726/22

Deering et al. ... 345/611

Naegle et al. 345/501

Poulin 463/42

Bennettcooevenne, 704/270

Shim et al.

Schneiderocovverens 702/19

Meyers

Dyl i 463/42

Balahura et al.

Urkencccoceevvvvivennns 235/386

Kruszewski et al.

Anand

Konumaccccceevvvvinnnen 463/42

Moore et al. 707/2

Arevalo Baeza et al. 463/42

Droppo etal. 704/234

Avidan etal. 382/276

Holland

Padmanabhan et al. 370/252

Chengetal.cccevennnee 463/42

Youm et al.

2007/0097832 Al 5/2007 Koivisto et al.

2007/0149279 Al* 6/2007 Nordenetal. ... 463/29
2007/0184903 Al 82007 Liuetal.

2007/0214135 Al 9/2007 Crivat et al.

2007/0293319 Al* 12/2007 Stamperetal. 463/42
2008/0005332 Al 1/2008 Pande et al.
2008/0098064 Al* 4/2008 Sherinian 709/203

2008/0140595 Al 6/2008 Park et al.

2008/0189789 Al* 82008 Lamontagne . . 726/26
2008/0242422 Al* 10/2008 Kropivay 463/42
2008/0242426 Al* 10/2008 Kraftetal. 463/43
2008/0263207 Al* 10/2008 Popescu et al. 709/226
2008/0293488 Al* 11/2008 Chengetal. 463/31

2009/0144059 Al* 6/2009 Yuetal. 704/256.1
2009/0203449 Al 8/2009 Douceur et al.
2010/0056276 Al* 3/2010 Silbersteinc.......... 463/36

OTHER PUBLICATIONS

Bharambe et al, “A Distributed Architecture for Interactive
Multiplayer Games,” retrieved at <<http://www.cs.cmu.edw/~ashu/
papers/cmu-cs-05-112.pdf>>, Jan. 2005, 25 pages.

Hsu et al., “On the Design of Multiplayer Online Video Game Sys-
tems,” available at least as early as Nov. 7, 2007, at <<http://viola.
usc.edu/Research/alex_ SPIEitcom03.pdf>>, 12 pages.

“Massively Multiplayer Online Games,” retrieved at <<http://
fortheloveofgames.net/games/articles/Massively-Multiplayer-
Online-Games.html>>, FortheLoveofGames.net, 2006, 2 pages.
Final Office Action for U.S. Appl. No. 12/029,286, mailed on Oct. 4,
2011, John Douceur, “Partitioned Artificial Intelligence for
Networked Games,” 10 pages.

* cited by examiner

U.S. Patent May 3, 2016 Sheet 1 of 10 US 9,327,194 B2

3{}{3 “"\1

GaainG SERVER

Al H M2

TN

{ mrerver)

CGahie CLIENT 1 AME CLIENT 3 QabE CLIENT N

FIG. 1

{PRIOR ART)

U.S. Patent May 3, 2016 Sheet 2 of 10 US 9,327,194 B2

) {.«'-“ . .
CARING SERVER 202 L e 200

P

CRTERNET Yy

k\%ﬁ/

Ciadal CUENT N Z10

US 9,327,194 B2

Sheet 3 of 10

May 3, 2016

U.S. Patent

TL7 N ANENS 3D

£ Ol

FOF 7 ANBrD 3D

GEE L vaEnD o

206 MAMIS DNV

US 9,327,194 B2

Sheet 4 of 10

May 3, 2016

U.S. Patent

'Ol

B 3TN
6% HIVETIV
FHACRY IV T
oy
EE w3ovNypy
NOLYOI TR0 13TV
RO YRR
: T34 MOIDBA
NOLLY SEAN I A3
e . Oab WHIAY R
HROVNYYY BHEAY Y P DN NOLYOIE Y S10§ FALOP
B
B eong v
ﬂ ' 4
4 Py
18 L

HBOWHIY o ARG w -

BOF
HEOHT I

..mwmm W..
HOLIROP

&

gooaseesy

EF RIS ONBIYD

TEF SNIENE ONIVE TYHINED

US 9,327,194 B2

Sheet 5 of 10

May 3, 2016

U.S. Patent

SUTLENY
MOLLSR0G ONY
DANZIMEATOT DMINN L

SWHAT HTAW] oo
CEMEBUED WM ALY

o,

.,

N

%,
y
¢
§
5
:
i

HOLYWMOUAIY
TP

it

BODGULOE LY
SHUEG WAV L

FREIYNL,

HOLHERIAAY
ST MOAY],

FWYNN

MG
MEIVERNG
G BOLUEA

US 9,327,194 B2

Sheet 6 of 10

May 3, 2016

U.S. Patent

9 Ol4

HRAHAG

HIGHODEN
NCHLISC
ALIING

ferts]
HOLO B LENDD)
SLMNEHDIAAT00)
SIS WOAVL |

¥i8

FAR it
MORLYATHTT SMTLTVYEY S ONINDL

LN BOACY

G108 HOLYINTWY) INSNIAOK 1539

HEZA TN
SNCHLISO L Oy
SO LAEOBEC

i

SR R oy
a8 MUY
SRR R

T3 T TNYLSHT MOLOVHINT

A
4

S08
INONT SHOLAEOSEG

SNOHLIED
240G
OV SMBAY It

T

#ig
AR
FHEH

08

LN BIVLE 3RV

0300 3MoNT 1y OIS ANTIND

US 9,327,194 B2

Sheet 7 of 10

May 3, 2016

U.S. Patent

(MO YW

kot
DY SIS N0 YL NRNO-ONGDES)
4 POINE A JivegHuERy

FARVE

b= W ph HL TR
= AVGING DNIOVLLY-HON
E AWANGT DNDIOYLLY

F A E R F K F
F XK N &N

¥
5

134 BOLDIA AL

KN E N

_—

YAIOUY TILNY

oo

U.S. Patent May 3, 2016 Sheet 8 of 10 US 9,327,194 B2

800 “y

PARTITION ARTIFICIAL INTELLIGENCE (AlYFOR
Gaming Nro A Server-Sipe Al
Anp A CusnT-SinE Al
an2

Attt SR

¥

Senn A Guinpse Or A Gane State Frow Tue
Server-Sine Al To Trae Cusnt-8me Al

COMPUTE COMPUTATIONALLY INTENSIVE TUNING

PARAMETERS ViIA THE CLENT-8IDE A
i)

SEND THE TURSNG PARAMETERS TO TUNE THE
SERVER-SIDE Al
808

FIG. 8

U.S. Patent May 3, 2016 Sheet 9 of 10 US 9,327,194 B2

900

PARTITION ARTIFICIAL INTELLIGENCE (ALY FOR
Graddingg INTO A SERveER-SiDE Al AND A
STATELESS AND DETERMETIO CUsNT-Bine Al
Lo

;;; e ————

Reppcate CUBNT-SInE A6 On Muutiels CLIBENTS

1
i
i
¥

Cosapane et Fross Tee MuLTiele CUBNT-SIDE
Als To OVERCOME A CLIENT FALURE
O A CuenT Tamperng BEVENT
OB

U.S. Patent May 3, 2016 Sheet 10 of 10 US 9,327,194 B2

1000

FPARTITION ARTIFICIAL INTELUIGENCE (Al FOR
Garainis T A SERVER-SIDE Al AND A
CLENT-SIDE Al Via A TAYLOR-BERIES APPROXIMATION

l

SEND A GLBPsE DF A Gane STaTe Fros Tue
ServER-BIDE A1 To THE CusnT-Sine Al
1004

|

Conpute COMPUTATIONALLY INTENSVE DoermicienTts For
THE TAYLOR-SERIES APPROSIMATION Via THE CuenT-Sne Al

Tome THE TAYLOR-BERIES APPROMATION AT THE SERVER-
e ALVIA THE COoBrrnENTS TO PRODUCE AN AGOREGATE
VECTOR FELD FoRk TAoTIcAL GAMBNG NAVIGATION
1008

Fi1G6. 10

US 9,327,194 B2

1
PARTITIONED ARTIFICIAL INTELLIGENCE
FOR NETWORKED GAMES

RELATED APPLICATION

This application is a continuation of and claims priority to
U.S. patent application Ser. No. 12/029,286, filed on Feb. 11,
2008, which is incorporated by reference herein.

COMPUTER PROGRAM LISTINGS

Four sets of C++ programming file listings used in accor-
dance with the subject matter are provided in four Appendices
after the Abstract on 5 sheets of paper and incorporated by
reference into the specification. The C++ programming files
are a C++ header for ideal computation of motion based on an
aggregate vector field, a C++ source for ideal computation of
motion based on an aggregate vector field, a C++ header for
partitioned computation of motion, and a C++ source for
partitioned computation of motion.

BACKGROUND

First-person shooter (FPS) games, massively multiplayer
online games (MMOG), and other networked games fre-
quently include automated computer players, or “bots”, in
addition to human players. The presence of bots in a game is
intended to make the game more enjoyable for the human
players. However, it is widely recognized that bots play worse
than if they were controlled by state-of-the art artificial intel-
ligence (AI). This is largely because the Al that controls each
bot must be kept very lightweight and simple, so as to avoid
overwhelming the computational resources of the gaming
server. Games would be more enjoyable, and therefore more
attractive to potential players, if bots could be made more
intelligent.

FIG. 1 shows a conventional online gaming system 100 in
which the gaming server runs multiple Als controlling mul-
tiple bots in a game. It is common for gamers to complain of
monsters 102, 104 that are so stupid as to make the game
unchallenging and rather unentertaining. Current gaming Als
exhibit astonishingly simple behavior. When unaware of
nearby players, a typical monster 102 either waits in a delin-
eated region or roams along a predetermined path. When a
player comes within a defined distance, the monster 102
launches a direct attack. When severely wounded, some mon-
sters 102 will fight to the death, whereas others will try to
retreat via a simple path. FIG. 1 shows two Als, Al 1 and Al
2, running on the gaming server. Because the gaming server
performs all of the Al computations for every bot in the game,
as well as centrally managing all of the game state, the per-
formance of the Als is quite limited.

Despite popular belief, the fundamental problem is not that
game developers cannot write better Al algorithms; rather, the
problem is that the servers that host MMOGs have insufficient
computing power to support the computational demands of
thousands of even moderately sophisticated, concurrently
running Als. Adding more back-end server resources could
solve the problem, but at a cost that would be prohibitive
given MMOG operations economics.

Sophisticated Al calculations can be offloaded to clients
only if several issues are addressed, including the availability
of client CPU capacity, communication latency between cli-
ents and the server, the possible failure of client machines,
and the risk of client exploitation.

Offloading computation to a client may induce a substan-
tial communication delay, as work that was previously per-

10

15

20

25

30

35

40

45

50

55

60

65

2

formed in the server’s main loop is now distributed to clients,
processed on those clients, and sent back to the server. Round-
trip latency between access networks can reach 400 ms, and a
56K-dialup access network can add as much as 500 ms more.
Although some aspects of Al, such as high-level strategic
planning, may tolerate latencies that approach one second, it
is not clear whether tactical-level Al can satisfactorily cope
with such a network delay.

Client machines can also fail in various ways. They may
crash or spontaneously reboot; network problems can cause
intermittent disconnection; players may abruptly quit the
game; or a competing client application might become active
and leave little available CPU. Thus, the server cannot afford
to rely on any particular client to perform any given compu-
tation.

Furthermore, in the absence of a secured execution plat-
form, Al code that runs on a client machine can be modified
by the machine’s owner. The owner might weaken the Al to
make monsters stupid and easy to kill, or strengthen the Al to
make monsters smarter and readily able to kill competing
players. The server cannot safely assume that clients will
calculate results honestly.

SUMMARY

This disclosure describes partitioned artificial intelligence
(Al) for networked gaming. An exemplary system splits the
Alinto a computationally lightweight server-side component
and a computationally intensive client-side component to
harness the aggregate computational power of numerous
gaming clients. Aggregating resources of many, even thou-
sands of client machines enhances game realism in a manner
that would be prohibitively expensive on the central server.
The system is tolerant of latency between server and clients.
Deterministic and stateless client-side components enable
rapid handoff, preemptive migration, and replication of the
client-side Al to address problems of client failure and client
tampering.

The partitioned Al can support tactical gaming navigation,
a challenging task to offload because of sensitivity to latency.
The tactical navigation Al calculates influence fields parti-
tioned into server-side and client-side components by means
of'a Taylor-series approximation.

This summary is provided to introduce the subject matter
of partitioned artificial intelligence for networked games,
which is further described below in the Detailed Description.
This summary is not intended to identify essential features of
the claimed subject matter, nor is it intended for use in deter-
mining the scope of the claimed subject matter.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a diagram of a conventional implementation of
artificial intelligence for gaming.

FIG. 2 is a diagram of an exemplary gaming system imple-
menting partitioned artificial intelligence for gaming.

FIG. 3 is a block diagram of exemplary replication of
client-side artificial intelligence for gaming.

FIG. 4 is a block diagram of an exemplary gaming server
that implements partitioned artificial intelligence for gaming.

FIG. 5 is a block diagram of exemplary influence field
production in a gaming server that implements partitioned
artificial intelligence for gaming.

FIG. 6 is a block diagram of an exemplary client-side
artificial intelligence engine.

FIG. 7 is a diagram of exemplary aggregate vector fields.

US 9,327,194 B2

3

FIG. 8 is a flow diagram of an exemplary method of parti-
tioning artificial intelligence for gaming.

FIG. 9 is a flow diagram of an exemplary method of over-
coming client failure and tampering when implementing par-
titioned artificial intelligence for gaming.

FIG. 10 is a flow diagram of an exemplary method of
partitioning artificial intelligence for gaming via a Taylor-
series approximation.

DESCRIPTION

Overview

This disclosure describes partitioned artificial intelligence
(AD) for networked games. Systems and methods split gaming
Al into a lightweight server-side component that runs at the
same speed as the gaming server’s game loop, and a compu-
tationally intensive client-side component that performs
complex calculations, e.g., for a local subset of the game’s
characters, in order to enhance game realism in a manner that
would be prohibitively expensive on the central server. Each
client is given a glimpse of the current game state in order to
compute rich detail about that part of the game world that is
accessible to the client. The system is tolerant of latency
between server and clients because the complex computa-
tions at the client are relevant to more than one game frame at
the server, e.g., for long term planning of internal game strat-
egy.

The client-side Al can be cast as discrete, portable compu-
tation “jobs,” deterministic and stateless, that can be off-
loaded by the server and interchangeably handled by any of
the participating gaming clients without regard for previous
computations or client states. Such discrete and standalone
computation assignments enable rapid handoff, preemptive
migration, and replication of the client-side Al to address
problems of client failure and game exploitation.

In one implementation, the partitioned Al is a tactical navi-
gation engine, spread between server and gaming clients.
Tactical navigation is conventionally a challenging task to
offload because it is highly sensitive to latency. The exem-
plary tactical navigation Al calculates influence fields of gam-
ing characters, the calculations partitioned into server-side
and client-side components by means of a Taylor-series
approximation.

The exemplary improved gaming Al can be employed to
make gaming characters, such as monsters, behave in more
intelligent and interesting ways, thus improving the MMOG
playing experience. One benefit of an exemplary system is
that the partitioned Al does not require a radical restructure of
MMOG architecture, but supplements and accelerates server-
based computation by offloading components of Al onto cli-
ent machines.

In several applications, partitioning the gaming Al is not
without challenges. Such partitioning can add a substantial
communication delay to code that normally executes within
the gaming server’s main loop. The partitioning may relocate
critical functionality to clients that may fail or become dis-
connected. And the Al partitioning may make sensitive com-
putations more readily exploitable by unscrupulous players
who hack their client software.

Addressing the problem of latency, the exemplary parti-
tioning splits the Al into a server-side component that retains
critical tight-loop control and a client-side component, which
in one implementation performs processor-intensive compu-
tation of tuning parameters for the server-side component.

In the case of the exemplary partitioned Al for navigation,
tactical navigation is based on summed influence fields of the
gaming characters. The gaming server offloads the bulk of the

10

20

25

30

35

40

45

4

computational effort for determining realistic influence fields
and influence field interactions as a two-dimensional Taylor-
series approximation. Implementations of the exemplary sys-
tem have demonstrated that partitioning the navigation Al is
effective for providing enhanced game realism without loss of
performance even with latencies of up to one second.

Exemplary System

FIG. 2 shows an exemplary gaming system 200 employing
the exemplary partitioned Al. The gaming system 200
includes a gaming server 202 connected via the Internet 204
or other network to multiple gaming clients 206, 208, 210.
The game may include multiple Al modules, such as Al-1 and
Al-2 to control multiple bot “monsters,” adversaries, or other
gaming characters 212,214, 216, 218, 220, 222. Fach type of
Al included in the game is partitioned into a server-side
component and a client-side component. For example, Al-1 is
partitioned into a server-side Al engine, “SRV-AI 1” 224 and
a client-side Al engine, “Client-Al 1 226. Likewise, Al-2 is
partitioned into a server-side Al engine, “SRV-AI 2” 228 and
a client-side Al engine, “Client-Al 2 230.

In some configurations, the gaming server 202 is co-lo-
cated with one of the gaming clients, but still manages the
state of the game. During play of the game, each game client
206 sends the server 202 information about what the client’s
local player is doing. In response, the gaming server 202
centrally updates the game state and sends information about
the updated game state to the clients 206.

In the exemplary gaming system 200, the partitioned Al
provides a MMOG in which monsters (e.g., bots 212) and
other non-player characters display behavior that is complex,
sophisticated, intelligent, conspiratory, and/or interesting.
For example, automated bot monsters 212 or other gaming
adversaries may travel in packs across a wide range and
engage in useful or distracting activities rather than just mill-
ing around as in conventional games. Such bots 212, ani-
mated by the partitioned Al, are enabled to become aware of
players by sight, sound, or smell, and may intelligently stalk
their victims and pounce when unexpected. Sophisticated
monsters 212 may work together, attacking the same target
and coordinating their efforts. They may assess a group of
players collectively, deciding whether to attack based on an
assessment of comparative strength.

By partitioning the game Al and offloading the Al compu-
tation from the gaming server 202 to game clients (e.g., 206),
aggregate resources of numerous participating client
machines can enhance game realism in a way that would be
prohibitively expensive on a central server. However, because
offloading can add significant latency to a computation nor-
mally executing within a gaming server’s main loop, the Al
partitioning aims to split the Al into a critical, but lightweight
server part and a merely supportive, but computationally
complex client part. The server-side Al consists of high-
frequency but (relatively) computationally simple compo-
nents that retain critical tight-loop control, while the client-
side Al consists of low-frequency but computationally
intensive components 226, 230 offloaded to gaming clients
206, 208.

Thus, for games that include bots in addition to human
players, the behavior of each bot is controlled by an Al that
runs on the gaming server 202. The server-side Als 224, 228
are kept simple and lightweight, as mentioned, so that they
can run on the server 202 without overloading the server’s
computational resources. The client-side Als 226, 230 can be
more sophisticated because each client 206 performs compu-
tations for only a subset of the bots in the game, and the client
206 does not need to expend computational power on man-
aging the game state. The server-side Al 224 performs the

US 9,327,194 B2

5

tasks that require rapid processing, such as targeting. Other
tasks, particularly those that can benefit from more sophisti-
cated computation, can be performed by the client-side Al
226.

The clients 206, 208, 210 also interact with the server 202
in the normal conventional manner, sending information
about their local players to the server 202 and receiving
updated information about the game state in return. This
game state information is also used as input to the client-side
Al computations. Furthermore, the server 202 may periodi-
cally send additional game state information to the clients
206, particularly if the client-side Al 226 requires more infor-
mation about the game state than would normally be needed
by the client 206 to display to the corresponding local player.
This additional information is often necessary, when the cli-
ent 206 is performing Al computations for a bot that is in a
completely different area of the game world than the avatar of
the client’s local player.

As shown in FIG. 3, a particular client-side Al 226 may be
replicated onto multiple clients. For example, client-side Al 1
226 is replicated on all three clients 206, 208,210. A12 302 is
depicted as a conventional, non-partitioned Al; however, Al 2
302 could also be partitioned and replicated, even onto some
of'the same clients that client-side A1 1 226 is replicated onto.
If one or more of the clients fails, as long as at least one client
206 is properly running a replica, the server 202 will receive
client Al support.

Exemplary Engines

FIG. 4 shows the exemplary gaming server 202 of FIGS. 2
and 3 in greater detail. The illustrated implementation is only
one example configuration, for descriptive purposes. Many
other arrangements of the components of an exemplary gam-
ing server 202 are possible within the scope of the subject
matter. Implementations of the gaming server 202 can be
executed in various combinations of hardware and software.

The exemplary gaming server 202 includes a central gam-
ing engine 402, an associated Al engine 404, a game state
monitor 406, a glimpse engine 408 with glimpse packager
410 to send clients a view of a current game state, and a
multiple players manager 412 that includes an interface 414
through which the gaming server 202 sends glimpses 416 of
the game state to clients 206 and receives back advice 418
from the clients 206. The gaming server 202 may also option-
ally include an engine for determining the processing power
or “system information” of particular gaming clients 206, in
order to determine the magnitude of client-side Al calcula-
tions that a given client 206 can handle.

The Al engine 404 may further include a multiple bots
manager 420 that includes server-side Al’s, for example,
server-side A11224, server-side A12 228, . . ., and server-side
AI*“N” 422. In the illustrated implementation, the Al delega-
tion engine 424 handles outgoing Al delegation as well as
processing of incoming advice 418 from clients, thus the Al
delegation engine 424 includes a pre-emptive migration
engine 426, a parallel delegation manager 428, and a multiple
redundant advice comparator 429. Finally, the Al engine 404
includes a vector field summation engine 430 to produce the
aggregate vector field 432, and a fallback engine 434 for when
clients fail to send back any advice 418 to the gaming server
202.

Inanimplementation in which the partitioned Al is used for
tactical gaming navigation, FIG. 5 shows a detail of some of
the server-side Al components: 224, 228, 422. Each of the
server-side Al components includes a respective tunable Tay-
lor-series approximator 502, 504, 506. The respective Taylor-
series approximators, when tuned by advice 418 received
from the client-side Al components (e.g., 226, 230), provide

10

15

20

25

30

35

40

45

50

55

60

65

6

corresponding influence fields 508, 510, . . ., 512, which are
then aggregated by the vector field summation engine 430
into the aggregate vector field 432.

Before describing operation of the exemplary gaming
server 202, a client-side Al engine 226 will now be described.

FIG. 6 shows an exemplary client-side Al engine 600,
implemented in a tactical gaming navigation context. The
illustrated implementation is only one example configura-
tion, for descriptive purposes. Many other arrangements of
the components of an exemplary client-side Al engine 600 are
possible within the scope of the subject matter. Implementa-
tions of the client-side Al engine 600 can be executed in
various combinations of hardware and software.

The illustrated client-side Al engine 600 includes a game
state input 602, including a glimpse parser 604; a local play-
ers and bots positions extractor 606, a descriptors engine 608,
a best movement calculator 610, a tuning parameters deriva-
tion engine 612, and an advice output 614 that includes an
interface 616 with the gaming server 202.

The descriptors engine 608 receives the game state infor-
mation from the glimpse parser 604 and derives and/or tracks
descriptors associated with players and bots in the game and
their respective influence fields, such as distance from player
subject 618, field decay factor 620, . . ., and field weight 622.
The best movement calculator 610 includes a descriptors and
positions analyzer 624, which together with the tuning
parameters derivation engine 612 performs the bulk of the
complex Al calculation being offloaded from the gaming
server 202. When the Al is partitioned via a Taylor-series
approximation, the tuning parameters derivation engine 612
may include a Taylor-series coefficients constructor 626 and
an entity position recorder 628. The entity position recorder
628 tracks new positions of players and bots after the best
movement calculations in order to provide the server-side Al
component 224 at the gaming server 202 with a relevant
positional frame of reference for the Taylor-series coefficients
being sent back as advice 418 to the gaming server 202.

Operation of the Exemplary System

One key feature of the exemplary partitioned gaming Al is
a built-in leeway between the critical tight-loop control of the
game maintained by the server-side Al 224 and the complex
computations that the server-side Al 224 requisitions from the
client side Al 226 at the gaming clients 206. That is, instead of
being used to determine only one game frame, the complex
calculations that are offloaded to client machines can be used
for a longer timeframe, thereby providing delay tolerance
between the server 202 and clients 206. In one implementa-
tion, the split between the client-side Al 226 and server-side
Al 224 is structured so that the advice 418 is useful to the
server-side Al 224 over multiple game frames. Thus, the
server-side Al 224 can tolerate somewhat stale advice. Fur-
thermore, to tolerate cases in which the server-side Al 224
receives no advice for an extended period of time, the server-
side Al 224 has a fallback mode, or the fallback engine 434, in
which the server-side Al 224 operates without need for advice
418. In the fallback mode, the server-side Al 224 may act
somewhat less intelligently, but does not behave pathologi-
cally, i.e., entities in the game still behave plausibly. Because
the server-side Al 224 can keep operating without the client-
side Al 226, the computations of the client-side Al 226 are
dubbed “advice.”

The output of each client-side Al 226, the advice 418, is
sent from the client-side Al 226 to tune the behavior of a
server-side Al 224. That is, the clients 206, 208, 210 send their
advice 418 back to the server 202, and the server 202 applies
the advice 418 from each client 206 to the appropriate server-
side Al 224.

US 9,327,194 B2

7

The split between the client-side Al 226 and server-side Al
224 is preferably structured so that the client-side Al 226 is
stateless, meaning that each computation is independent of
other computations. This allows the gaming server 202 maxi-
mum freedom to select which clients 206 to delegate compu-
tations to.

The split between the client-side Al 226 and the server-side
Al 224 is also preferably structured so that the client-side Al
226 is deterministic: i.e., given the same glimpse of the game
state, the client-side Al 224 will produce identical advice 418.
By replicating the same stateless and deterministic client-side
Al 226 on multiple clients 206, the parallel delegation man-
ager 428 assures that a high level of fault-tolerance can be
achieved in the exemplary gaming system 200. Even complex
fault behaviors, such as those resulting from users mali-
ciously moditying their client machines, can be tolerated. In
particular, the gaming server 202 can wait for multiple replies
and use plurality voting to determine which advice is correct.
For example, referring to FIG. 3, if client 1 206 calculates
incorrect advice due to a faulty client-side Al 1 226, then the
gaming server 202 will receive incorrect advice from client 1
206, correct advice from client 2 208, and correct advice from
client 3 210. Since the server received matching advice from
clients 2 and 3, the server can use this advice safely and ignore
the faulty advice from client 1 206.

From the perspective of the server-side Al 224, as intro-
duced above, the glimpse engine 408 sends a glimpse 416 of
the game state to the client 206, and the client 206 responds
with advice 418. The glimpse packager 410 may combine
game state information with the client-side Al assignment to
be computed by the client 206. A glimpse 416 is a snapshot of
limited scope, containing data obtained by the game state
monitor 406, of proximate relevance to the AI’s subject entity,
i.e., the bot being controlled or predicted. The game state
input 602 receives the glimpse 416 as input for the client-side
Al computation. The output of the client-side Al computation
is advice 418 for the server-side Al 224, typically in the form
of parameters and coefficients. Because glimpses 416 and
advice 418 consume bandwidth, it is desirable to keep them of
small data size.

Stateless client-side Al 226 means that each glimpse-ad-
vice computation is independent of prior computations, with
no client-side state carried forward. If a client 206 fails or
becomes disconnected, and the server 202 hands off the com-
putation to another client 208, the new client 208 can imme-
diately pick up where the previous one left off. In addition, the
server 202 can temporally limit the effect of each client 206
on the server-side Al 224 by assigning successive computa-
tions for the same subject to different clients. It can do this,
e.g., by signaling the pre-emptive migration engine 426 to
migrate to the client-side Al 226 of another client 208.

There are also advantages to designing the client-side Al
226 to be deterministic, meaning that identical glimpses 416
produce identical advice 418. To tolerate failures and
exploits, the parallel delegation manager 428 can redundantly
issue the same glimpse 416 and Al tasks to multiple clients
206,208, 210 effectively replicating the client-side A1226. To
deal with simple failures, the multiple redundant advice com-
parator 429 can accept the first advice it receives. Alterna-
tively, to deal with attempted client exploits, the multiple
redundant advice comparator 429 can wait for multiple
replies and use plurality voting to determine the correct
advice 418; however, this may increase latency as the server
202 waits for replies from multiple clients 206, 208, 210. If
the client-side Al computation needs to include randomness,
the seed for the random-number generator can be selected by

10

15

20

25

30

35

40

45

50

55

60

8

the server 202 and sent with the glimpse 416 to clients 206,
thereby keeping the client-side Al 226 deterministic.

Exemplary Tactical Gaming Navigation

In one implementation, partitioned Al is applied to the task
of tactical navigation. As mentioned, this is a particularly
challenging task because it is highly sensitive to latency. Yet,
the exemplary Al calculations can be effectively partitioned
in a manner that tolerates the latency of remote computation.

The conventional approach to game-Al navigation is first
to select a goal and then to move toward that goal via a series
of predetermined waypoints. If the goal is an opponent, then
when the opponent comes within a defined range, navigation
switches to a mode of random selection among prepro-
grammed attack movements such as charging, feinting, and
strafing. The main benefit of this conventional approach is
computational efficiency, since the complex logic for select-
ing a new goal is performed sporadically rather than reevalu-
ated on every frame, and detailed path calculations are per-
formed offline prior to game execution

However, the conventional approach has at least two sig-
nificant weaknesses. First, it only allows for one goal at a
time. In contrast, humans can simultaneously weigh several
goals and devise a path that optimizes over all of them. Sec-
ond, the conventional approach does not readily adapt to
quickly changing circumstances, such as the virtual locations
of'teammates and opponents. Consequently, the conventional
approach cannot execute interesting and intelligent move-
ment patterns, such as complex retreating behavior.

The exemplary partitioned Al system 200, however,
addresses the two conventional weaknesses noted above with
a more flexible approach to tactical game navigation. Rather
than navigating toward a single selected goal, the exemplary
gaming system 200 calculates the aggregate vector field 432
that characterizes the collective influence of all entities in a
vicinity, and then calculates a best way to move in the direc-
tion indicated by the field 432. The aggregate vector field 432
optimizes over both the explicit primary goal and implicit
secondary goals, and can be readily recalculated as entities
move. From the subject’s perspective, each other entity
exudes an attractive or repulsive radial influence field with a
magnitude, as given in Equation (1), of:

MI=1wia™ (D

where d is distance 618 from the subject, m is a decay factor
620, and W is a weight 622. Most entities are attractive, such
as the primary goal, targeted opponents, weapons, ammuni-
tion, and health packs, etc. Some entities may be repulsive,
such as a powerful opponent who is currently attacking the
subject.

The aggregate vector field 432 is a sum of the influence
fields from nearby entities. For a subject at point p in virtual
space, the aggregate field f from a set of N entities can be
calculated, as in Equation (2), as:

N 2)
Fpr= Willpe - Pl (i - p)

k=1

where the weight W 622 and decay factor m 620 are functions
that vary per entity. In general, the weight 622 and decay
functions 620 are affected by the state of the subject; for
example, as the subject’s health decreases, it becomes more
repulsed by attacking opponents and more attracted by health
packs. The above expression for fis reformulated as Equation

3):

US 9,327,194 B2

Sl y) = 3

N
D WG =0+ = AP R (g =ik (=))
k=1

where 1 and j respectively represent unit vectors in the X and
Y dimensions. By simplifying the latter formulation, the cost
of calculating the aggregate vector field 432 is five additions,
six multiplications, and one exponentiation per entity in the
subject’s vicinity.

FIG. 7(a) shows an example actual aggregate vector field
700 (aggregate influence field). The subject, “S,” is repelled
by the attacking enemy “A”; attracted to the other non-attack-
ing enemy “N”; and even more attracted to the health pack
“H”.

Offloading: Taylor-Approximate Fields

The cost of calculating an approximate aggregate vector
field 432 is proportional to the count of entities in the area. To
offload the bulk of this effort to a client, the exemplary gam-
ing system 200 uses the exemplary Al partitioning Specifi-
cally, in the server-side Al 224, the calculation of the actual
influence field f'is replaced with the calculation of a second-
order two-dimensional Taylor-series approximated vector
field 432, as in Equation (4):

SEHAX, FHAY (A g+ A | Ax+ A Ay +A A5 +4 AP+
AsAXAY)i+(Bo+B 1 Ax+BoAy+B A +B Ay +

BsAxAy)j (©)]

The cost of this computation is merely 12 additions and 13
multiplications, irrespective of the count of entities in the
vicinity. The Taylor-series coefficients, A, to A5 and B, to B,
are computed by the client-side Al 226, based on a glimpse
416 of the game state provided by the server 202 when the
subject is at point (X, ¥) in virtual space.

FIG. 7(b) illustrates the exemplary 2D Taylor-series
approximated vector field 432 corresponding to the actual
aggregate vector field 700 in FIG. 7(a). Near the subject’s
position, e.g., within the region highlighted by the circle, the
Taylor-series approximated vector field 432 closely follows
the actual influence field 700.

The visual edges of FIG. 7(), however, show that the
exemplary Taylor-series approximated vector field 432 can be
wildly wrong at positions far from the subject being con-
trolled by the particular Al This is because the Taylor-series
accuracy diminishes with distance from the location point of
the subject. Therefore, as the subject moves away from this
point over time, the advice 418 returned by the client-side Al
226 becomes less valuable. In addition, even if the subject
stays in place, the positions of the other entities change,
rendering the advice 418 stale.

Exemplary Code

The server-side Al 224 selects which direction to move
each bot by means of the aggregate vector field 432, as shown
in FIG. 7. The vector field summation engine 430 calculates
the aggregate vector field 432 as the sum of influence fields
508, 510, 512 radiating from entities in the game. From the
perspective of a bot that the Al controls (e.g., subject “S” in
FIG. 7), each entity radiates a field that decays with distance
from the entity. This bot is made by the server-side Alto move
in the direction of the vector field in the location it is currently
standing. Calculation and use of this aggregate vector field
432 are illustrated by the code in exemplary Code Tables A
and B, in Appendices A and B, respectively.

Code Tables A and B present a class that calculates the ideal
best direction for a bot to move, as a function of the bot’s
current position, the position of other entities in the game 618,

10

15

20

25

30

35

40

45

50

55

60

65

10

and a weight 622 and decay rate 620 of the influence fields
from each of the other entities. The constructor for the object
takes an array of entity descriptors 618, 620, . . ., 622, each of
which indicates the position of the entity, the weight
(strength) 622 of the field at the point of emanation, and the
exponential decay rate 620 of the field. In one implementa-
tion, the constructor merely stores pointers to this information
for later use.

A bestDirection function calculates the ideal next direction
for the bot to move, as a function of the bot’s current position.
The function loops over all entities, calculates a vector from
the entity to the bot, exponentially decays the weight of the
entity’s field by the distance between the entity and the bot,
and accumulates the resulting vectors over all entities. At the
end, the exemplary code divides out the magnitude to produce
a unit vector indicating the best direction. As can be seen by
inspecting the exemplary code itself, the cost of calculating
the aggregate vector field 432 is five additions, six multipli-
cations, and one exponentiation per entity.

Code Tables C and D in Appendices C and D, respectively,
present a class that calculates the best direction for a bot to
move, using the exemplary Al partitioning. The constructor
626 therein illustrates the client-side Al computations for
tactical navigation. The constructor 626 takes an array of
entity descriptors 618, 620, . . ., 622, each of which indicates
the position 618 of the entity, the weight (strength) 622 of the
field, and the exponential decay rate 620 of the field. The
constructor also takes the current location of the bot under
control. In one implementation, the constructor calculates
twelve scalar values, which are coefficients for the two-di-
mensional Taylor-series approximation of the aggregate vec-
tor field 432. The Taylor-series approximation is fairly accu-
rate for locations that are relatively near to the calculation
point.

Taylor-series approximations are well known in the art, so
they will not be unduly described here. The exemplary Code
Tables in the Appendices clearly illustrate the mathematics
involved in producing the coefficients, by looping over all of
the entities. The tuning parameters derivation engine 612
stores these coefficients, and the entity position recorder 628
stores in the object the location of the bot at the moment the
calculation was made.

The corresponding bestDirection function for exemplary
Code Tables C and D illustrates the server-side Al 224 com-
putations for tactical navigation. The bestDirection function
calculates the next direction for the bot to move, as a function
of'the bot’s current position. This function employs a Taylor-
series approximation, so it need not loop over all entities.
Instead, it performs a simple computation involving 12 addi-
tions and 13 multiplications, irrespective of the count of enti-
ties. The code divides out the magnitude to produce a unit
vector indicating the best direction.

Exemplary Methods

FIG. 8 shows an exemplary method 800 of partitioning
artificial intelligence (Al) for gaming. In the flow diagram,
the operations are summarized in individual blocks. The
exemplary method 800 may be performed by combinations of
hardware, software, firmware, etc., for example, by compo-
nents of the exemplary gaming server 202 and client-side Al
engine 600.

At block 802, artificial intelligence (Al) for gaming is
partitioned into a server-side Al component and a client-side
Al component. The server-side Al is computationally light-
weight and maintains tight game-loop control. However, the
server-side Al is tunable, and offloading complex computa-
tion of the tuning parameters is one factor that keeps the
server-side Al lightweight.

US 9,327,194 B2

11

At block 804, a glimpse of a game state is sent from the
server-side Al component to the client-side Al component.
The glimpse need not be comprehensive, but discloses
enough of the game state so each a client can compute rich
detail about the part of the game world that is accessible to the
client.

Atblock 806, computationally intensive tuning parameters
are calculated via the client-side Al component. The client-
side Al can bring concentration and processing power to bear
on the client’s limited corner of the game world that is in play.
Specifically, the client’s processing power can be used to
calculate cunning and entertaining behavior and tactics for
automated players and local bots in the game.

At block 808, the tuning parameters are sent to tune the
server-side Al component. The server-side Al is intentionally
constructed to be computationally simple and non-intensive,
so that once the tuning parameters are plugged in, the server-
side Al can implement sophisticated bot behavior and intel-
ligence in real time, in lockstep with the game, as it is being
played by online gamers.

FIG. 9 shows an exemplary method 900 of overcoming
client failure/tampering when partitioning gaming Al. In the
flow diagram, the operations are summarized in individual
blocks. The exemplary method 900 may be performed by
combinations of hardware, software, firmware, etc., for
example, by components of the exemplary gaming server 202
and client-side Al engine 600.

Atblock 902, Al for gaming is partitioned into a server-side
Al and a stateless and deterministic client-side Al. By making
each client-side Al computation independent of other com-
putations and independent of previous client states, the client-
side Al is portable among clients, or from the standpoint of
the server-side Al, clients can be selected interchangeably to
solve a given computational offload.

At block 904, the client-side Al is replicated on multiple
clients. Since the client-side Al is portable and the computa-
tions can be completely divorced from the local gaming of the
client that is computing the client-side AL, a given offload can
be redundantly replicated across multiple clients.

At block 906, inputs from the multiple client-side Als are
compared in order to overcome a client failure or a client
tampering event. The comparison provides several features to
the server-side Al: an ability to choose the first return of
client-side results to optimize speed; an ability to ignore
failed or disconnected clients; or an ability to compare mul-
tiple instances of returned advice from the clients in order to
reject advice that does not match a consensus of the other
clients.

FIG. 10 shows an exemplary method 1000 of partitioning
gaming Al via a Taylor-series approximation. In the flow
diagram, the operations are summarized in individual blocks.
The exemplary method 1000 may be performed by combina-
tions of hardware, software, firmware, etc., for example, by
components of the exemplary gaming server 202 and client-
side Al engine 600.

At block 1002, A for gaming is partitioned into a server-
side Al and a client-side Al. The Taylor-series approximation
effectively partitions the gaming Al by dividing the total Al
task into the two parts, consisting of solving a version of the
Taylor-series using coefficients, and computing the coeffi-
cients themselves.

At block 1004, a glimpse of a game state is sent from the
server-side Al to the client-side Al. The glimpse can be trans-
mitted efficiently to the client because the glimpse need only
consist of game state parameters relevant to a local part of the
game.

10

15

20

25

30

35

40

45

50

55

60

65

12

At block 1006, computationally intensive coefficients are
computed at the client-side Al for the Taylor-series approxi-
mation. Taylor-series approximations provide an elegant way
to partition gaming Al, because very little data—just the
coefficients—are transferred from the client-side Al to the
server-side Al, and yet providing the coefficients to the
server-side Al has a profound effect on the game.

At block 1008, the Taylor-series approximation at the
server is tuned via the coefficients in order to produce an
aggregate vector field for tactical gaming navigation. The
server-side Al has athand, and canreadily use in real time, the
aggregate influence field that contains a well-calculated sum-
mary of the influences and potential interactions of the bots
and other non-player entities in the game. The aggregate
influence field is carefully crafted via intensive computation
at the clients, with computational care that the server itself
cannot perform while the game is live online.

CONCLUSION

Although exemplary systems and methods have been
described in language specific to structural features and/or
methodological acts, it is to be understood that the subject
matter defined in the appended claims is not necessarily lim-
ited to the specific features or acts described. Rather, the
specific features and acts are disclosed as exemplary forms of
implementing the claimed methods, devices, systems, etc.

APPENDIX A

Code Table A: C++ header for ideal computation
of motion based on aggregate vector field:

class DC__Ideal

public:

DC__Ideal(field__pt_t* objArray, int objCount);

void bestDirection(vec3__t& nextDir, vec3__t& currPos);
private:

fleld_ pt_ t* objArray;

int objCount;

1

APPENDIX B

Code Table B: C++ source for ideal computation
of motion based on aggregate vector field:

DC_Ideal:DC__Ideal(field__pt_t* objArray, int objCount)
{
this->objArray = objArray;
this->objCount = objCount;
¥
void
DC_ Ideal::bestDirection(vec3__t& nextDir, vec3_t& currPos)
{
double x = currPos[0];
double y = currPos[1];
double f=0.0;
double g =0.0;
for (int i = 0; i < objCount; i++)
{
double xi = objArray[i].pos[0];
double yi = objArray[i].pos[1];
double wi = obj Array[i].weight;
double mi = objArray[i].decay;
double ji =x - xi;
double ki =y - yi;
double ji2 =ji * ji;
double ki2 = ki * ki;
double hi2 = ji2 + ki2;
double t0 = wi * pow(hi2, -0.5 — 0.5 * mi);
f4=ji * t0;

13
APPENDIX B-continued

US 9,327,194 B2

14
APPENDIX D-continued

Code Table B: C++ source for ideal computation

of motion based on aggregate vector field:

g +=ki * t0; 5
¥
double mag = sqrt(f*f + g*g);
nextDir[0] = float(f / mag);
nextDir[1] = float(g / mag);
! 10
APPENDIX C
Code Table C: C++ header for partitioned computation of motion: 15
class DC__Plan
public:
DC__Plan(vec3__t& currPos, field__pt_t* objArray, int objCount
)
void bestDirection(vec3__t& nextDir, vec3__t& currPos); 20
private:
double x__bar;
double y__bar;
double f__bias;
double f_x;
double f_y; 25
double f_x2;
double f_y2;
double f_xy;
double g_ bias;
double g x;
double g_y; 30
double g x2;
double g y2;
double g xy;
i
35
APPENDIX D
Code Table D: C++ source for partitioned computation of motion:
DC__Plan::DC__Plan(vec3__t& currPos, fleld_ pt_t* objArray, int
: 40
objCount)
x__bar = currPos[0];
y__bar = currPos[1];
f_ bias = 0.0;
f x=0.0;
f y=0.; 45

double f2_ x2 =0.0;

double £2_y2 =0.0;

f xy=0.0;

g bias=0.0;

g x=0.0;

g y=0.0;

double g2 x2 =0.0;

double g2 y2 =10.0;

g xy=0.0;

for (int i = 0; i < objCount; i++)

double xi = objArray[i].pos[0];
double yi = objArray[i].pos[1];
double wi = objArray[i].weight;
double mi = objArray[i].decay;
double ji = x__bar - xi;

double ki =y_ bar - yi;

double ji2 = ji * ji;

double ki2 = ki * ki;

double hi2 = ji2 + ki2;

double t0 = wi * pow(hi2, -0.5 - 0.5 * mi);
double t1 =10/ hi2;

double t2 =t1 / hi2;

double u0 = —ji * (1.0 + mi);
double ul = -ki * (1.0 + mi);
f_bias +=ji * t0;

50

55

60

Code Table D: C++ source for partitioned computation of motion:

fx +=(ki2 - mi * ji2) * t1;

f y+=ul *ji*tl;

f2_x2+=u0* (3.0 * ki2 - mi * ji2) * t2;
f2_y2 +=u0* (ji2 - (2.0 + mi) * ki2) * t2;
f xy+=ul * (ki2 - (2.0 + mi) * ji2) * t2;
g bias +=ki * t0;

g x+=u0 *ki*tl;

gy +=(ji2 - mi * ki2) * t1;

g2 x2 +=ul * (ki2 - (2.0 + mi) * ji2) * t2;
g2 y2 +=ul * (3.0 *ji2 - mi * ki2) * t2;
g xy+=u0 * (ji2 — (2.0 + mi) * ki2) * t2;

¥
f x2=05*12_x2;
f y2=05*12_y2;
g x2=05%g2 x2;
g y2=05%g2 y2;
¥
void
DC__Plan::bestDirection(vec3__t& nextDir, vec3__t& currPos)

double x = currPos[0];
double y = currPos[1];
double del_x =x — x__bar;
double del_y =y - y_bar;
double del_x2 = del_x * del__x;
double del_y2 =del_y * del_y;
double del__xy =del_x * del_y;
double f=

f_bias +

f x*del_x+

f y*del_y+

f_x2 *del_x2+

f y2*del_y2+

f xy *del_xy;
double g =

g bias+

g x*del_x+

g y*del_y+

g x2*del_x2+

g y2*del_y2+

g xy*del_xy;
double mag = squt(f*f + g*g);
nextDir[0] = float(f/ mag);
nextDir[1] = float(g/ mag);

The invention claimed is:

1. A system implemented on a gaming server device, the
system comprising:

partitioning an artificial intelligence (Al) process for an

online game into a server-side Al component, the server-
side Al component being tunable, and a client-side Al
component that provides tuning parameters for the
server-side Al component;

running the server-side Al component;

offloading the client-side Al component to a gaming client

device of a game player of the online game, the client-
side Al component being independent of prior compu-
tations of previous glimpses of game states of the online
game; and

receiving tuning parameters from the client-side Al com-

ponent to tune the server-side Al component.

2. The system as recited in claim 1, the acts further com-
prising structuring the client-side Al component to be deter-
ministic to produce identical tuning parameters based at least
partly onidentical glimpses of a game state of the online game
being sent to the client-side Al component.

3. The system as recited in claim 1, the acts further com-
prising:

replicating the client-side Al component; and

US 9,327,194 B2

15

offloading the replicated client-side Al component to one
ormore other gaming client devices of one or more other
game players of the online game.

4. The system as recited in claim 3, the acts further com-
prising:

redundantly sending a same glimpse of a game state to the

gaming client device and the one or more other gaming
client devices; and

applying a plurality voting scheme to the tuning param-

eters received from the gaming client device and tuning
parameters received from the one or more other gaming
client devices to overcome a tampered state of one of the
gaming client device and the one or more other gaming
client devices.

5. The system as recited in claim 3, the acts further com-
prising:

redundantly sending a same glimpse of a game state to the

gaming client device and the one or more other gaming
client devices; and

accepting tuning parameters that are first received from

among the gaming client device and the one or more
other gaming client devices to overcome a client failure.
6. The system as recited in claim 1, wherein the server-side
Al component and the client-side Al component are config-
ured to tolerate remote computation latency.
7. The system as recited in claim 1, wherein the artificial
intelligence process is related to tactical navigation of the
online game, and the tactical navigation employs an aggre-
gate vector field to determine movements of gaming charac-
ters, and wherein the server-side Al component selects which
direction to move a gaming character of the gaming charac-
ters via the aggregate vector field calculated as a sum of
influence fields radiating from the gaming characters in the
online game.
8. The system as recited in claim 7, the acts further com-
prising:
partitioning a calculation of the aggregate vector field
between the server-side Al component and the client-
side Al component via Taylor-series approximations;

receiving, from the client-side Al component, coefficients
for the Taylor-series approximations based on influence
fields emanating from a local subset of the gaming char-
acters, the coefficients comprising the tuning parameters
for the server-side Al component; and

summing the Taylor-series approximations ofthe influence

fields radiating from the gaming characters, the Taylor-
series approximations running at substantially a same
rate as a game loop of the gaming server device.

9. The system as recited in claim 1, wherein the client-side
Al component performs Al computations for a first gaming
character that is in a different area of a game world than a
second gaming character, the second gaming character being
controlled by a local player of the game client device.

10. The system as recited in claim 1, the acts further com-
prising temporally limiting an effect of the gaming client
device on the server-side Al component by preemptively
migrating the client-side Al component via assigning succes-
sive computations for a gaming character to another gaming
client device.

11. A method implemented on a gaming server device that
hosts an online game, the method comprising:

partitioning an artificial intelligence (Al) process for the

online game into a server-side Al component, the server-
side Al component being tunable, and a client-side Al
component that provides tuning parameters for the
server-side Al component, the artificial intelligence pro-
cess being related to tactical navigation of the online

10

15

20

25

30

35

40

45

50

55

60

65

16

game that employs an aggregate vector field to deter-
mine movements of gaming characters, wherein the cli-
ent-side Al component uses an array of descriptors for
each gaming character to calculate scalar coefficients for
Taylor-series approximations of the aggregate vector
field;

running the server-side Al component on the gaming server

device;

offloading the client-side Al component to a gaming client

device of a game player of the online game; and
receiving tuning parameters from the client-side Al com-
ponent to tune the server-side Al component.

12. The method as recited in claim 11, wherein the server-
side Al component selects which direction to move a gaming
character of the gaming characters via the aggregate vector
field calculated as a sum of influence fields radiating from the
gaming characters in the online game.

13. The method as recited in claim 12, wherein the scalar
coefficients are computed based on a glimpse of a game state
provided by the gaming server device when the gaming char-
acter of the game characters is at a given position in a virtual
space.

14. The method as recited in claim 11, wherein each
descriptor includes a position of a respective gaming charac-
ter, a strength weighting of a respective influence field, and an
exponential decay rate of the respective influence field.

15. A method implemented on a gaming server device that
hosts an online game, the method comprising:

running a server-side Al component on the gaming server

device;

soliciting tuning parameters as advice from a client-side Al

component by sending a glimpse of part of a game state
to a gaming client device that runs a client-side Al com-
ponent; and
receiving tuning parameters from the client-side Al com-
ponent to tune the server-side Al component, the tuning
parameters comprising coefficients representing behav-
ior possibilities based at least in part on the glimpse of
the part of the game state.
16. The method as recited in claim 15, further comprising:
redundantly sending the glimpse of the part of the game
state to one or more other gaming client devices; and
accepting tuning parameters that are first received from
among the gaming client device and the one or more
other gaming client devices to overcome a client failure.
17. The method as recited in claim 15, further comprising:
redundantly sending the glimpse of the part of the game
state to one or more other gaming client devices; and

applying a plurality voting scheme to tuning parameters
received from the gaming client device and the one or
more other gaming client devices to overcome a tam-
pered state of one of the gaming client device and the one
or more other gaming client devices.

18. The method as recited in claim 15, wherein the client-
side Al component provides a stateless and deterministic
segment of a gaming Al, individual glimpse-advice
exchanges between the gaming server device and the gaming
client device comprising a standalone module of the gaming
Al that can be executed interchangeably by the gaming client
device, the standalone module running independently of prior
computations and without dependence on a client-side state
that has been carried forward.

19. The method as recited in claim 15, further comprising
using the tuning parameters from the client-side Al compo-
nent as the advice for improving behavior of a gaming char-
acter of the online game.

US 9,327,194 B2
17 18

20. The method as recited in claim 15, wherein the gaming
server device is independent of the advice from the client-side
Al component to satisfactorily run the online game.

#* #* #* #* #*

